Elastic Registration of Multimodal Prostate Images

نویسندگان

  • Arnau Oliver
  • Xavier Llado
چکیده

Description: A novel method is developed for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape contexts is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained from the minimization of image difference between the fixed and the transformed image, where the latter is represented by a set of non-linear thin-plate spline equations defined over the moving image. Image difference minimization leads to the maximum overlap of the fixed and the transformed moving images but, the gray-level transformation of the moving image does not produce clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences is jointly minimized with the fixed and transformed image difference. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980 ± 0.004, average 95% Hausdorff distance of 1.63 ± 0.48 mm and mean target registration and target localization errors of 1.60 ± 1.17 mm and 0.15 ± 0.12 mm respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elastic Registration of Multimodal Prostate Images

Description: A novel method is developed for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape contexts is used to find th...

متن کامل

Elastic Registration of Multimodal Prostate Images

Description: A novel method is developed for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape contexts is used to find th...

متن کامل

Elastic registration of multimodal prostate MRI and histology via multiattribute combined mutual information.

PURPOSE By performing registration of preoperative multiprotocol in vivo magnetic resonance (MR) images of the prostate with corresponding whole-mount histology (WMH) sections from postoperative radical prostatectomy specimens, an accurate estimate of the spatial extent of prostate cancer (CaP) on in vivo MR imaging (MRI) can be retrospectively established. This could allow for definition of qu...

متن کامل

General Multimodal Elastic Registration Based on Mutual Information

Recent studies indicate that maximizing the mutual information of the joint histogram of two images is an accurate and robust way to rigidly register two monoor multimodal images. Using mutual information for registration directly in a local manner is often not admissible owing to the weakened statistical power of the local histogram compared to a global one. We propose to use a global joint hi...

متن کامل

Improving supervised classification accuracy using non-rigid multimodal image registration: Detecting Prostate Cancer

Computer-aided diagnosis (CAD) systems for the detection of cancer in medical images require precise labeling of training data. For magnetic resonance (MR) imaging (MRI) of the prostate, training labels define the spatial extent of prostate cancer (CaP); the most common source for these labels is expert segmentations. When ancillary data such as whole mount histology (WMH) sections, which provi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016